Geeks in Phoenix

Geek Blog


Make your computer faster by upgrading the hardware

One of the most frequently asked questions is, "How can I make my computer faster?". It may seem like a simple question, but it does not have a simple answer. Let's take a look at how you can make your computer faster by upgrading the hardware.

Make your computer faster by upgrading the hardware

In previous articles, I have discussed how to use software to speed up a computer. This time around, I will talk about how to get a computer run faster by upgrading the hardware.

Now when it comes down to what makes a computer fast, it boils down to how quickly can all of the different components process data. Let's take a look at all of the parts of a computer that affect the speed and see what we can upgrade.

Note: Some of these upgrades may require complicated disassembly of your computer. If you are not comfortable performing any of these upgrades, please contact a local computer repair service like Geeks in Phoenix.

Motherboard

The motherboard has the most bearing on the performance of a computer. The motherboard bus is what oversees the transferring of data between the various components. The faster the bus speed, the quicker the data travels through the motherboard.

The motherboard bus connects the Central Processor Unit (CPU) to the Northbridge and Southbridge chipsets. The Northbridge handles the graphics bus and memory bus. The Southbridge handles all of the Input/Output (I/O) components, such as SATA and M.2 drives, USB ports, onboard audio, and network adapter. And the speed of the CPU and memory are based on multiplying the bus speed.

Upgrading your motherboard

This is one upgrade that requires serious consideration. If you have a laptop, all-in-one, or a brand name desktop computer (like Dell or HP), a motherboard upgrade is impossible. Only machines that use off-the-shelf components can have the motherboard upgraded.

The first thing to think about is your existing hardware. Will the CPU and memory work on a new motherboard? You would probably get better performance if you upgraded the CPU and memory too.

The second thing to think about is software. You will have to reinstall the operating system and all programs completely. And if you are running Windows, you will also have to get a new product key, as your existing key is bound to your current motherboard.

Technically speaking, you can upgrade any component that attaches to the motherboard and not have to reactivate Windows. Change out the motherboard, and Microsoft sees that as a whole new computer. It is in the EULA (End User License Agreement).

So upgrading the motherboard is probably out of the question. But there are a few other components that you can improve to get better performance from your computer.

CPU

Upgrading a CPU is an excellent way of gaining some speed on a desktop computer. Sorry laptop owners, the majority of laptop computers have the CPU soldered to the motherboard. The same holds for some all-in-one systems too.

Upgrading your CPU

If you are thinking about upgrading the CPU on your motherboard, you will need to do some research. The first thing to do is find the manual/specifications for your motherboard. It would be best if you found out what the CPU socket type it has. For example, Intel CPUs use LGA 1151, LGA 2066, etc. socket types, AMD CPUs use sTRX4, AM4, etc. socket types.

The second thing you will need to do is verify with the motherboard manufacturer what CPUs the BIOS (Basic Input/Output System) supports. Installing a new CPU may require updating the BIOS firmware. And you will need to do this before installing a new CPU.

All of this information should be easy to find on the manufacturer's website. If you can't find it, give them a call. Once you have a list of supported CPUs and the BIOS versions to run them, you should be ready to go.

Remember to get some thermal compound when you order the new CPU. The existing compound will more than likely spread across the current CPU and cooler. Clean off the old compound on the CPU cooler and apply some new compound to the new CPU and then reinstall the cooler.

Memory

Upgrading the memory in a computer has always been the biggest bang for the buck. This applies to all types of machines; laptop, desktop, and all-in-ones. And the majority of the time, it is pretty simple.

I usually recommend looking at the existing memory and seeing how to get the maximum amount in the computer. This time around, I recommend looking at the speed of the current memory, and if you can install faster memory.

Installing faster memory could mean having to replace all of the existing memory modules. But doing that would make your computer run faster. Remember that you can not mix memory of different speeds, they all have to be the same speed and clock timings.

Upgrading your memory

There are three things you will need to find out. The first and most important is what type of memory does your computer take. The majority of computers nowadays can use memory that runs at different speeds. Remember that the memory speed is a multiple of the motherboard bus speed.

The second is memory slots; how much memory can each handle and how many does your computer have. Again, you can find all of this information in the motherboard/system manual. It would be best if you were able to find these on the manufacturer's website.

The third is how to access the memory slots. Getting to the memory slots in a desktop is pretty straightforward. Laptops and all-in-one systems may be tricky. I have seen some MSI laptops that had to be completely disassembled to get to the memory slots.

For more details on memory upgrades, check out the following article.

How to upgrade or add more memory to your computer

Drives

Having a drive that has a fast transfer rate will make a difference with the speed of a computer. Merely upgrading from a Hard Disk Drive (HDD) to a Solid State Drive (SSD) can be a game-changer. You would be amazed at the difference in performance between them.

Now HDDs and some SSDs use a SATA connection on the motherboard. The standard SATA connection has a transfer rate of up to 6 Gigabits per second. An HDD doesn't come close to that transfer rate, but most SSDs do.

And then there is the M.2 drive. It does require a particular slot on the motherboard, as it requires direct channels to the Southbridge chipset. But the transfer rate of 32 Gigabits per second will blow your socks off.

Of all of these recommendations for making your computer faster, this procedure will take the most time. Depending on the upgrade route you choose, the total time can be a few hours to a couple of days.

Upgrading your drive

There are two ways of upgrading your primary boot drive; cloning the existing drive or a fresh installation of the operating system. Each of them has its pros and cons.

Cloning your existing drive

  • Pros: This can be the fastest way of upgrading your drive, and you do not have to reinstall the operating system and programs.
  • Cons: You may run into a problem with resizing partitions and with getting your computer to boot correctly from the new drive.

There are two ways to go about cloning a drive; disk-to-disk or disk-to-image / image-to-disk. If you have a desktop computer, you can do either type of drive cloning. If you have a laptop or all-in-one computer, cloning to an image is the only option. And if you are upgrading from a SATA to an M.2 drive, cloning to an image is recommended.

For more details on disk cloning, check out the following article.

How to upgrade the hard drive in your computer

Fresh (clean) installation

  • Pros: You get a brand-new operating system and programs with that right-out-of-the box experience
  • Cons: This can take some time to get all of the software installed and personal files restored

This is the most time consuming of the two cloning procedures, but it has some significant advantages. What will take the most time is finding all of the software that you will want to reinstall. For more information on performing a clean installation of Windows 10, check out the following article.

How to perform a clean Windows 10 installation

The ultimate guide to buying a new computer

Being a computer technician, there one question that I seem to get asked more than any other "I am looking for a new computer, what do you recommend?". I then spend several minutes (sometimes hours) discussing the various computer configurations. So here is a list of things to look for when buying a new computer.

When it comes to computers, you can get them in hundreds of different configurations. Should you get a laptop or a desktop? Or maybe an all-in-one? These are some of the questions you have to ask yourself when you are looking a getting a new computer.

So I thought I would take the time and share with you what I usually tell my customers. So grab something to drink and a pen and paper to take notes. This might be a long article.

Computer: Should I get a laptop, desktop, or all-in-one?

This question is quickly answered with the Form Follows Function principle. If you need to use your computer in different locations, you will need to get a laptop. If you are going to use your computer in just one place, then a desktop or all-in-one should fill the bill.

Laptops

If you are thinking about getting a laptop computer, there are a few things to keep in mind. If you take a few precautions with your laptop, it can last a long time. I have a netbook that is over ten (10) years old and still looks and runs like its brand new.

Since laptops are portable, they tend to get damaged more often than a desktop or all-in-one computer. The most common damage I see is liquid spills. Once liquid gets into a laptop, it will run where ever gravity will take it.

And no matter how well you dry it out, there will eventually be some damage that appears. And I am just talking about water here as other liquids, such as wine or juice, contain sugars and acids.

I once had a laptop that had wine spilled on it. When I started to disassemble it, I noticed that the flat cables used to connect the different components inside of the laptop had started to deteriorate. The wires were dissolving from the acidity in the wine.

Desktops

Desktop computers have been the mainstay of the computer form for decades, and they are the preferred style of a computer for business use. With external connections for USB devices, monitors, wired networking, and audio, the configurations are kind of endless.

But desktop computers come in different forms, and they are not all created equal. For example, standard ATX, Mini-ATX, and ITX (motherboard form factor) based desktop computers use IEEE (Institute of Electrical and Electronics Engineers) form standard for computer components.

What this means is that internal components such as power supplies, hard drives, graphic cards, and memory modules are all the same for each of these styles of the desktop computer.

And then there is the SSF (Small Form Factor) desktop computer. These use the same style of memory modules as standard desktop systems but use low-profile expansion cards, like graphics cards.

SSF systems also use smaller, and lower output power supplies, usually explicitly made to the specifications of the manufacturer of the computer. And the lower output power supplies can be an issue when upgrading components.

For example, a customer wanted to upgrade the memory and graphics card in an SSF computer, but it only had a 250-watt power supply. Since everything inside of a computer takes wattage, including memory, I ended up having to find a low-profile graphics card that used under 30 watts of power.

But some desktop computers do have a downside, and that is the size of the case. Gaming computers usually have huge cases so that they can accommodate cooling fans and liquid CPU coolers. High power systems generate a relatively large amount of heat.

And of course, if you are going to have multiple monitors, those will take up a good amount of space too. I built a system for a customer that had six (6) monitors, two rows of three. With the desktop computer, keyboard, and mouse, the whole system ended up being almost eight (8) feet wide.

All-in-one

This style of computer is excellent for people that do not have the room for separate components (a computer and monitor). You can get a pretty good size screen and all of the connections (USB ports, wired network port, and sometimes an external monitor port).

Now all-in-one computers come with and without touch screen function. When it comes to touch screens, you have to remember that you will be extending your arm out to use it.

This can make your shoulder hurt after an extended amount of time using it. You have to ask yourself if it is worth the additional cost to get the touch screen feature.

There is also a little known secret about all-in-one computers that nobody tells you about; they are hybrid systems. Quite simply, they are a combination of laptop and desktop components.

I have worked on quite a few all-in-one computers and have found some will use laptop-style memory & drives, and some will use desktop-style memory and drives and some a combination of both.

And heaven forbid you have to replace the screen in an all-in-one computer. Most of the time, you have to completely disassemble them to get the exact model number of the display.

The last all-in-one computer that I worked on had six (6) different possible model numbers for the replacement display. It depended on what company had supplied the screen for the system when it was built.

Drive(s): HDD, SSHD, or SSD?

When you are shopping for a new computer, a lot of times, the description you get from the seller lacks some specific details. Sure they will tell you how much storage the machine has, but do they tell you what kind of drive the storage is?

For low priced computers, sellers will usually just say something like 'XXXGB's of storage can hold a gazillion photos'. It is only when you get into the mid to upper price range do sellers start to tell you what kind of storage a computer has (HDD, SSD, etc.). So the first thing I want to do is explain the different types of drives.

HDD (Hard Disk Drive)

HDD's offer larger capacity at a lower cost, but have a slower read/write speed. HDD's are perfect for the average computer user that just wants to surf the web, check e-mail, and store some photos from their phone. They come in two (2) different forms, 2.5" and 3.5", and connect to the computer using a SATA (Serial AT Attachment) interface, which determines the input/output speed. The upside to HDD's is that when they start to fail, you usually get some type of warning and have time to transfer/recover data from them.

SSHD (Solid State Hybrid Drive)

SSHD's offer the capacity of HDD's with faster read / write speed. As the name implies, these drives are hybrid, which means they are a combination of spinning disk(s) and flash memory. The memory acts as a cache for the data stored on the disk(s). As you use these drives, they learn where the most frequently used data is stored and can access it more quickly than a standard HDD. SSHD's also come in two (2) different forms, 2.5" and 3.5", and connect to the computer using a SATA interface. The down-side of SSHD's is that when they fail, it is usually the memory portion of the drive that dies. This makes transferring/recovering the data stored on it a little harder, but not impossible.

SSD (Solid State Drive)

SSD's offer extremely fast read/write speeds but can be on the expensive side for larger capacities. SSD's are a collection of flash memory chips and make no noise when running. They are also more resistant to shock and are a better choice for laptop computers. SSD's also come in multiple different forms and interfaces. When it comes to SSD's, the most important thing to look for is the interface it uses. It is the interface that determines the read/write speed. SATA interfaces can have a transfer rate of 6GB per second. M.2 interfaces can have a transfer rate of 32GB per second. The down-side of SSD's is when they fail; it is tough to recover the data stored on them. So if the computer you are looking at buying has an SSD, perform a regular backup of it.

A good rule of thumb for when trying to determine what type of drive a computer might have is to remember that if the size is under 500GB, it probably is an SSD. Drive manufacturers no longer make HDD's or SSHD's smaller than 500GB. Now that we have covered the types of drives let us take a quick look at how they can be used and configured.

Single drive computers - All-in-one computers and low priced desktop and laptops usually have only one drive. Also. Ultra-thin laptops will often have either one thin profile HDD, SSHD (7MM SATA), or SSD (7MM SATA or M.2) drive.

Multiple drive computers - Mid to high priced desktop and laptops computers can come with numerous drives. You usually see gaming computers with multiple drives that have a smaller, 500GB to 1TB SSD (usually an M.2) for the operating system/programs and a larger HDD, 2TB or larger, for data storage.

I have seen some gaming computers that have had two (2) SSD's set up in a RAID (Redundant Array of Inexpensive Disks) 0/1 configuration. But these are kind of rare, but they are on the market. So keep your eye out for them.

While we are on the subject of multiple drive configurations, we need to talk about Intel Optane. You may see Intel Optane listed as part of the storage specification on a new computer.

Now Intel Optane is similar to the flash memory inside of SSHD drives. It can cache the most frequently used files and programs on a drive that it is paired with and speed up reading and writing to that drive. Intel Optane uses an M.2 interface and works best when paired up with a drive, either an HDD or SSD, that uses a SATA interface.

Intel Optane will not improve the performance of drives that use an M.2 interface. I had a customer that had me set up an Intel Optane device paired with an M.2 SSD. Believe it or not, but the read and write performance went down. Definitely not a good choice.

Processor: What brand and type should I get?

There are two main CPU (Central Processing Unit) manufacturers out there, AMD and Intel, and both have their pros and cons. Intel CPU's usually are a little bit more expensive, and AMD CPU's are infamous for being able to be over-clocked.

All modern CPUs have multiple processing units called cores. The more cores a CPU has, the more data it can process at one time. Then you have the frequency (speed) that the CPU processes the data.

But since most CPU's run at a frequency between 3 GHz and 5 GHz, the amount of time you gain using a 5 GHz CPU over a 3 GHz CPU is kind of irrelevant. So it comes down to how many cores do you need.

Using Intel CPU's as an example, the basic Intel i3 processor has two cores and works well for running one program at a time, like e-mail, writing documents and surfing the Internet. But it does not work very well when you try multi-tasking with Adobe Photoshop and Autodesk Revit.

On the other end of the Intel CPU's, you have the Intel i9 processor line, which can have up to 10 cores. These processors can handle running multiple programs at one time and are the preferred CPU for doing 3D rendering. But remember, the more cores a processor has, the more money it costs.

Memory: How much should I get?

When it comes to the amount of memory you should get in a new computer, it just comes down to the question, "What are you going to use your computer for?".

The first thing you have to take into consideration is the operating system. Every computer nowadays has a 64-bit processor, and the operating system uses a portion of the memory just for itself.

For example, a 64-bit version of Windows 10 requires 2 Gigabytes of memory just for itself. That doesn't include any other programs. If your computer does not have a separate GPU (Graphic Processor Unit), then the onboard IGPU (Integrated Graphics Processing Unit) would also use some of the system memory.

The bare minimum amount of memory I recommend is 8 Gigabytes, but 16 or 32 Gigabytes is more of a standard amount. 64 gigabytes and higher is nice, but it will add more to the cost of the computer.

Video/graphics card: What should I look for?

Here again, it is all about what you are going to use your computer for. Each type of computer (laptop. desktop and all-in-one) has its pros and cons when it comes to graphics.

All-in-one systems are meant for everyday computing, spreadsheets, e-mail, and surfing the Internet. They usually just have an onboard IGPU that uses the system memory.

Laptop and desktop computers usually come standard with an on-board IGPU and can also include a separate GPU that has its own separate memory. If you are looking for a computer for gaming or 3D rendering, you will want a separate GPU.

Now features available for separate GPU's will differ from laptop to desktop computers. You will find that you get a better selection of GPU's with desktop computers than laptops. The reason is desktops use PCI-e expansion slots for adding in separate GPUs.

For more about expansion cards, check out the following article.

How to add an expansion card to your desktop computer

Either way, if you are looking for a computer with a high-performance GPU, check the requirements of the software you want to run. That will give you the guidance for what GPU features you need.

On a side note, I have had to troubleshoot display issues with laptops that have an IGPU and GPU. With these types of laptops, the IGPU and the GPU run simultaneously and switch between the two depending on the demands of the programs running.

Sometimes these types of laptops will experience crashing when switching between intense graphic programs like games and standard applications like web browsers. The easy fix is to set the GPU as the default graphic processor for all programs.

Monitor: Single or multiple?

I usually tell customers to get the largest size that space will allow. With the display resolutions always increasing, having a monitor that can handle them is essential. You will more than likely own this monitor for over a decade, so you might as well look towards any future use.

When shopping for a monitor, you have to keep in mind how it is going to connect to your computer. You will need to check the available video connections on your computer and get the same type on the monitor. Here is a link to an article with images of the most popular video connectors.

The most common computer video display connectors

Now two types of video connectors also include audio, HDMI, and DisplayPort. So if you plan on using one of these video types to connect your new monitor, make sure that the monitor you purchase has built-in speakers.

If you are going to use an HDMI connection, you can also look at using a television as a monitor. The resolution may not be as high as a regular monitor, but you could use it as a television too. I built a computer with an HDMI graphics card just for my home entertainment system.

Keep in mind that any monitor you buy may not come with the correct video cable to connect it to your computer. Getting a cable at the same time you buy the monitor could save you a lot of frustration when it comes to setting up the new computer.

And keep the receipt for any cables handy, just in case the new monitor does include the correct one. I would rather have to return a cable at my leisure than have to run out to get one to finish the setup. As the old saying goes, 'An ounce of prevention is worth a pound of cure'.

What if the computer you are looking at buying can support more than one monitor? If you are going to go with multiple monitors, I recommend getting the same make and model for each one and, if possible, buy them at the same time. That way, you get monitors that were manufactured around the same time as each other.

Once you get your new computer setup, there are a few things you should do first. Here is an article that discusses those things in detail.

Five things you should do first when you get a new computer

Using a drive adapter or docking station to access a drive

When it comes to repairing computers, there are times when I have to be able to access Hard Disk Drives (HDD), Solid State Drives (SSD), or CD/DVD drives outside of a laptop or desktop case. That is when I need to use a drive adapter or docking station. So here are some of my favorite drive adapters and dock stations.

Using a drive adapter or docking station to access a drive

Having a power supply or motherboard fail can be a real pain in the butt. You cannot get your computer to start up, but you cannot even get to any of your documents or settings. That is when having a second computer and a drive adapter or docking station comes in handy.

Using a drive adapter or docking station can convert an HDD or SSD drive to a USB device. And if you use a drive adapter, you can connect a CD/DVD drive to an ultra-thin laptop and use it a record or playback CDs or DVDs.

Now I have several different drive adapters and docking stations that I use for different uses. The majority of them are USB 3.0, but I do have a few that are USB 2.0.

The easiest one to use is a drive adapter that attaches directly to the back of the device. This type is what I use to connect a CD/DVD drive to ultra-thin laptops that do not have CD/DVD drive. I also use it with desktop computers with CD/DVD drives that do not work.

Photo of a single drive adapter
Photo of a single drive adapter

Now the majority of drive adapters and docking stations can only work with Serial ATA (SATA) drives. The one pictured above works with SATA drives and 2.5" or 3.5" Parallel ATA (PATA) for those 'old school' drives.

And the cool thing about this drive adapter is the power supply for it uses a standard Molex connector. You can use it to power up any older device that has a Molex connection.

Photo of a single drive docking station
Photo of a single drive docking station

The most common docking station is for a single SATA drive. The beautiful thing about docking stations is they have power buttons, so you do not have to disconnect the USB connection before disconnecting the power supply.

Photo of a multiple drive docking station
Photo of a multiple drive docking station

You can also get docking stations that can hold more than one drive. These come in handy if you are cloning one drive to another. They can also be used to recreate failed RAID (Redundant Array of Independent Disks) arrays.

The downside to docking stations is you can only connect 2.5" or 3.5" HDD's or SSD's to them. If you want to attach a CD/DVD drive, you will need to use a drive adapter.

Using either a drive adapter or docking station is just like using an external drive. Just attach it to a USB port and power it up. Most computers will automatically install a driver and assign it a drive letter. From there, you are ready to go.

How to safely optimize your solid state drive

When it comes to getting the best performance out of your computer, nothing can beat a Solid State Drive (SSD). Right out-of-the-box they are extremely faster reading / writing data than a Hard Disk Drive (HDD). But there are a few things that you have to do differently with an SSD. Here's how to safely optimize your solid state drive.

The definition of tweak

There are plenty of articles out there that will give you a ton of different tweaks you can use to speed up the SSD access time. From turning off disk indexing to disabling Prefetch and Superfetch. Some may work for you, some may not. Generally speaking, if you're running Windows 7 or higher, the operating system should recognized the SSD and modify its behavior accordingly. The following tweaks are completely safe and will not harm your system in any way.

General SSD maintenance

SSD's operate differently from HDD's and there are a couple of things you should never do to an SSD. Since SSD's have limited read / write cycles, any program that intensively accesses the SSD could shorten the life span of the drive. Running a disk defragment program on an SSD is definitely not recommended. And as far as Check Disk (CHKDSK) is concerned, you'll need to contact the manufacturer of your SSD to find out if they recommend it or not.

Microsoft started building in support for SSD's in Windows 7 / Windows Server 2008 R2 and has expanded on it in Windows 8 / 8.1 & Windows Server 2012. Since low-level operation of SSD's is different from HDD's, the Trim command was introduced to handle deletes / format requests. To verify that Trim is on, you'll need to open an Administrative Command Prompt.

How to open a Command Prompt with Administrator privileges in Windows 7
How to open a Command Prompt with Administrator privileges in Windows 8
How to open a Command Prompt with Administrator privileges in Windows 10

You can verify that Trim is enabled by typing the following into an Administrative Command Prompt:

fsutil behavior query DisableDeleteNotify

If the command returns a 0 then Trim is enabled. If it returns a 1, then it is not. To enable Trim, just type the following into the Admin Command Prompt:

fsutil behavior set DisableDeleteNotify 0

SSD free space maintenance

SSD's do have one down side; their capacity is smaller than HDD's, so maintaining an adequate amount of free space is necessary. Now there are two scenarios for setting up computers with SSD's: Single-drive (SSD only) and Multiple drives (SSD + HDD). Laptops are usually single-drive and desktops are almost always multiple-drive. Here's a few ways to maintain free space.

Single-drive (SSD only)

The options here are limited. To free up space you could store your personal files like documents, photos and music to an external drive or to the cloud. Here are a few more ideas.

Turn off Hibernation.
With the speed of an SSD, boot times will be quite faster than with an HDD. You'll find that you can boot your computer just as fast as if you brought it out of hibernation. And since hibernation writes the system memory to disk, you'll free up the same amount of disk space that is equal to the total system memory. And if you have a lot of memory, this can free up a big chunk of space on your SSD.

Disable Windows hibernation and free up disk space

Turn off the virtual memory / pagefile.
Use this with caution! Technically, virtual memory is used when all of the system memory is full. If you have a large amount of system memory (16GB or more) and you don't run memory hog software like Photoshop, you should be alright disabling it. And you'll free up a few GB's of drive space in the process.

Managing Virtual Memory / Pagefile in Windows 7
Managing Virtual Memory / Pagefile in Windows 8
Managing Virtual Memory / Pagefile in Windows 10

Clean up drive on a regular basis.
Temporary files and browser caches are a few items you'll need to keep an eye on. Using a program like Piriform's CCleaner or Disk Cleanup that comes with Windows will take care of these files. Disk Cleanup can also be run as a scheduled task too.

Free up more disk space with Windows 7 Disk Cleanup
Clean up your hard drive in Windows 8 with Disk Cleanup
Clean up Windows 10 with Disk Cleanup
Clean up and optimize your computer for free with CCleaner

Multiple-drive (SSD + HDD)

This is the optimal setup. Everything under single-drive scenario applies here. Windows and program files need to be on the SSD. Almost anything else that Windows doesn't require for normal operation can go over to the HDD.

Move the virtual memory / pagefile.
Instead of turning it off, just move it to the HDD (see link above).

Move personal files to HDD.
Your documents, photos and music can take up a large amount of space on your drive. Get them off of the SSD and over to the HDD.

Modifying the default locations of user files and library properties in Windows 7
Modifying the default locations of user files and library properties in Windows 8
Modifying the default locations of user files and library properties in Windows 10

There are plenty of other tweaks you can do, like moving location of your browser cache and temp folders to the HDD. You can find all of that information and more with a quick search on Google.

How to upgrade your computers hard disk drive to a solid state drive

Most computers (laptop & desktop) nowadays come with a Hard Disk Drive (HDD) as standard equipment with a Solid State Drive (SSD) as an option. Each drive type has its pros and cons: HDD's are cheaper and have more storage, but SSD's are extremely fast (especially when connected to a SATA3 port). So if your existing computer has a HDD, odds are you could replace it with a SSD. Here's how to upgrade your computer hard disk drive to a solid state drive.

How to upgrade your computer's hard disk drive to a solid state drive

I wrote an article not long ago on how to upgrade the hard drive in your computer and will be referring back to it often. It describes how to clone a smaller drive to a larger one of the same type. Since SSD's normally have less storage than HDD's, this time I'll have to shrink the existing HDD (80 GB) partition(s) down below the capacity of the target SSD (64 GB) before I can clone it.

As in the aforementioned article, the first thing to do is a Checkdisk of the existing HDD. Doing this will assure there are no errors that may prohibit the cloning of the drive.

Running Checkdisk in Windows 7 / Windows Vista

Running Checkdisk in Windows 8

Now we have to start cleaning up the drive. Windows has a built-in tool called Disk Cleanup (cleanmgr.exe) that works pretty well at getting out the clutter. Try using it from an admin command prompt, that way you'll get more options.

Disk Cleanup Windows 7 / Vista
Disk Cleanup Windows 8

Since we are trying to get the maximum amount of free space we can, we will have to delete some files, which may include documents, photos, videos, etc. Doing a backup right now will insure we have a copy of all of the files if we need to recover some later.

Windows 7 / Windows Vista Backup
Windows 8 Backup

Next thing I have to do is find out what is taking up the space on the existing HDD. For this I'll use a copy of SpaceMonger. After quick view, I see I can free up several gigabytes of space by permanently removing the hibernation file and temporarily deleting the swap file. Windows will warn you about having no swap file, but we will be recreating the swap file once the drive cloning is complete.

Disable Windows hibernation
Disable Windows swap file

The next thing we need to do to the drive is to defragment it. I'll use Defraggler from Piriform for this task. Once the drive is defragged, it's time to shrink it. To do this, open Computer Management, expand the Storage section in the left column and select Disk Management. In the right column, right-click on the partition marked as Boot (usually C:) and select Shrink. Remember to take the size down at least 10-15% below the capacity of the new SSD.

Shrinking a partition down in Windows 7
Shrinking a partition down in Windows 7

Once the partition has been resized, it's time to clone the drive. The following article has all of the details on how to clone you hard drive, including links to the cloning software.

How to upgrade the hard drive in your computer

Note: An issue not addressed in the article above is the form factor; the existing HDD is 3.5" form factor and SSD's are normally 2.5" form factor.
A desktop hdd and an ssd with adapter brackets
This can easily be resolved by using a pair of 2.5" to 3.5" adapter brackets.

Once the drive cloning is complete and the system is running again, we need to expand the boot partition to use any free space that may be available. Open Computer Management, expand the Storage section in the left column and select Disk Management. In the right column, right-click on the partition mark as Boot (usually C:) and select Expand. Once the boot partition has been resized, you can now enable Windows swap file.

Customer service is #1

Here at Geeks in Phoenix, we take pride in providing excellent customer service. From computer repair, virus removal, and data recovery, we aim to give the highest quality of service.

Bring your computer to us and save

We base our in-shop computer repair service  on the time we work on your computer, not the time it takes your computer to work!

Contact us

Geeks in Phoenix
Professional service at an affordable price!
4722 East Monte Vista Road
Phoenix, Arizona 85008
(602) 795-1111

Like Geeks in Phoenix on Facebook

Follow Geeks in Phoenix on Twitter

Watch Geeks in Phoenix on YouTube

Geeks in Phoenix is an IT consulting company that specializes in servicing all brands of desktop and laptop computers. Since 2008, our expert and knowledgeable technicians have provided excellent computer repair, virus removal, data recovery, photo manipulation, and website support to the greater Phoenix metro area.

At Geeks in Phoenix, we have the most outstanding computer consultants that provide the highest exceptional service in Phoenix, Paradise Valley, Scottsdale, and Tempe, Arizona. We offer in-shop, on-site, and remote (with stable Internet connection) computer support and services.

Copyright © 2020 Geeks in Phoenix LLC